27 research outputs found

    High Temperature Electronics Design for Aero Engine Controls and Health Monitoring

    Get PDF
    There is a growing desire to install electronic power and control systems in high temperature harsh environments to improve the accuracy of critical measurements, reduce the amount of cabling and to eliminate cooling systems. Typical target applications include electronics for energy exploration, power generation and control systems. Technical topics presented in this book include:• High temperature electronics market• High temperature devices, materials and assembly processes• Design, manufacture and testing of multi-sensor data acquisition system for aero-engine control• Future applications for high temperature electronicsHigh Temperature Electronics Design for Aero Engine Controls and Health Monitoring contains details of state of the art design and manufacture of electronics targeted towards a high temperature aero-engine application. High Temperature Electronics Design for Aero Engine Controls and Health Monitoring is ideal for design, manufacturing and test personnel in the aerospace and other harsh environment industries as well as academic staff and master/research students in electronics engineering, materials science and aerospace engineering

    High Temperature Electronics Design for Aero Engine Controls and Health Monitoring

    Get PDF
    There is a growing desire to install electronic power and control systems in high temperature harsh environments to improve the accuracy of critical measurements, reduce the amount of cabling and to eliminate cooling systems. Typical target applications include electronics for energy exploration, power generation and control systems. Technical topics presented in this book include:• High temperature electronics market• High temperature devices, materials and assembly processes• Design, manufacture and testing of multi-sensor data acquisition system for aero-engine control• Future applications for high temperature electronicsHigh Temperature Electronics Design for Aero Engine Controls and Health Monitoring contains details of state of the art design and manufacture of electronics targeted towards a high temperature aero-engine application. High Temperature Electronics Design for Aero Engine Controls and Health Monitoring is ideal for design, manufacturing and test personnel in the aerospace and other harsh environment industries as well as academic staff and master/research students in electronics engineering, materials science and aerospace engineering

    Mechanical and electrical characterisation of Au wire interconnects in electronic packages under the combined vibration and thermal testing conditions

    Get PDF
    This paper concerns the reliability of thermosonically bonded 25μm Au wires in the combined high temperature with vibration conditions, under which the tests have been carried out on wire bonded 40-pin Dual-in-Line (DIL) High Temperature Co-fired Ceramic (HTCC) electronic packages. Mechanical, optical and electrical analysis has been undertaken in order to identify the failure mechanisms of bonded wires due to the combined testing. The results indicated a decrease in the electrical resistance after a few hours of testing as a result of the annealing process of the Au wire during testing. Shear and pull strength levels remained high in general after testing, showing no significant deterioration due to the test under the combined high temperature and vibration conditions. However, a trend of the variation in the strength values is identified with respect to the combined conditions for all wire bonded packages, which may be summarised as: i) increase of the testing temperature has led to a decrease of both the shear and pull strength of the wire bonds; ii) the mechanical behaviour of the wires is affected due to crystallization that leads to material softening and consequently the deformation of wire

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    High temperature electronics design for aero engine controls and health monitoring

    No full text
    There is a growing desire to install electronic power and control systems in high temperature harsh environments to improve the accuracy of critical measurements, reduce the amount of cabling and to eliminate cooling systems. Typical target applications include electronics for energy exploration, power generation and control systems. Technical topics presented in this book include: High temperature electronics market High temperature devices, materials and assembly processes Design, manufacture and testing of multi-sensor data acquisition system for aero-engine control Future applications for high temperature electronics High Temperature Electronics Design for Aero Engine Controls and Health Monitoring contains details of state of the art design and manufacture of electronics targeted towards a high temperature aero-engine application.€6,000 BPC fee covered by the EC FP7 Post-Grant Open Access Pilo

    Human urinary exosomes in bladder cancer patients : properties, concentrations and possible clinical application

    Get PDF
    OBJECTIVE: High grade bladder cancer is extremely aggressive. Early detection is thus an important challenge. De- velopment of non-invasive diagnostic tools particularly using urine samples could be of importance in the diagnosis and surveillance of these patients. Exosomes are small vesicles present in the urine and have the potential to be used as biomarkers of cancer. Thus studies of the properties and concentrations of these particles in bladder cancer patients are of importance.MATERIALS AND METHODS: The concentration of exosomes present in urine was determined by nanoparticle tracking analysis using a Nanosight LM10 unit. Clinical urine samples were routinely collected and fixed using Preservcyt. The morphology of exosomes was studied in electron micrographs and characteristic exosome markers using Western blots.RESULTS: The exosome concentration of fixed samples stored at room temperature was constant for 48 hours and the same as fresh samples. Exosomes derived from patients presenting for a transurethral resection of their bladder tumor exhibited the exosome markers ALIX and TSG101 and also the classic cup shaped appearance in electron micrographs. The concentration of exosomes in patients presenting for transurethral resection of a bladder tumor was significantly greater than in patients presenting for check cystoscopy with no recurrence (median 77.2 × 108 per ml compared with 38.8 × 108 per ml, P < 0.001). A ROC analysis (area under the curve 77.4%) suggested that a suitable cut-off concen- tration of 85 × 108 per ml is associated with a sensitivity of 43% and specificity of 91% for diagnosing bladder cancer.CONCLUSIONS: Thus the concentration and properties of exosomes can be conveniently studied in fixed urine sam- ples derived from bladder cancer patients. The characteristic properties of exosomes were preserved and increased numbers were found in patients presenting for transurethral resection of their tumor. With an appropriate cut-off value, urinary exosome concentrations may have utility in excluding a cancer recurrence when monitoring patients successfully treated for bladder cancer.Publisher PDFPeer reviewe

    Predicting the behaviour of micro-electronic displays using computational mechanics

    Get PDF
    Micro-electronic displays are indispensible devices used in high performance applications such as aerospace, medical, marine and industrial sectors.These devices provide an interface to real time mission critical devices and therefore require good optical visual performance and high reliability, all this within varied and challenging environments

    The integration of on-line monitoring and reconfiguration functions into a safety critical automotive electronic control unit.

    No full text
    This paper presents an innovative application of IEEE1149.4 and the Integrated Diagnostic Reconfiguration (IDR) method to an Automotive Electronic Control Unit implemented as a fully-integrated mixed-signal system. The IEEE1149.4 test structure has been embedded and used on-line for interconnect monitoring and signal analysis. This provides higher resolution failure diagnostics enabling localised fault compensation. A novel On-Line Monitoring architecture is presented, that supports real-time testing of the critical circuit nodes. The paper concludes that fault tolerance can be integrated into mixed-signal electronic systems to handle key failure modes
    corecore